66 research outputs found

    From Category Theory to Functional Programming: A Formal Representation of Intent

    Get PDF
    The possibility of managing network infrastructures through software-based programmable interfaces is becoming a cornerstone in the evolution of communication networks. The Intent-Based Networking (IBN) paradigm is a novel declarative approach towards network management proposed by a few Standards Developing Organizations. This paradigm offers a high-level interface for network management that abstracts the underlying network infrastructure and allows the specification of network directives using natural language. Since the IBN concept is based on a declarative approach to network management and programmability, we argue that the use of declarative programming to achieve IBN could uncover valuable insights for this new network paradigm. This paper proposes a formalization of this declarative paradigm obtained with concepts from category theory. Taking this approach to Intent, an initial implementation of this formalization is presented using Haskell, a well-known functional programming language

    An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way 5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across clouds and network resource domains interconnected through SDN. In this paper, we provide details on how this orchestration system has been deployed and it is operated on top of the experimentation infrastructure provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the proposed orchestration approach

    Prevalence of interstitial pneumonia suggestive of COVID-19 at 18F-FDG PET/CT in oncological asymptomatic patients in a high prevalence country during pandemic period: a national multi-centric retrospective study

    Get PDF
    Purpose: To assess the presence and pattern of incidental interstitial lung alterations suspicious of COVID-19 on fluorine-18-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) ([18F]FDG PET/CT) in asymptomatic oncological patients during the period of active COVID-19 in a country with high prevalence of the virus. Methods: This is a multi-center retrospective observational study involving 59 Italian centers. We retrospectively reviewed the prevalence of interstitial pneumonia detected during the COVID period (between March 16 and 27, 2020) and compared to a pre-COVID period (January\u2013February 2020) and a control time (in 2019). The diagnosis of interstitial pneumonia was done considering lung alterations of CT of PET. Results: Overall, [18F]FDG PET/CT was performed on 4008 patients in the COVID period, 19,267 in the pre-COVID period, and 5513 in the control period. The rate of interstitial pneumonia suspicious for COVID-19 was significantly higher during the COVID period (7.1%) compared with that found in the pre-COVID (5.35%) and control periods (5.15%) (p < 0.001). Instead, no significant difference among pre-COVID and control periods was present. The prevalence of interstitial pneumonia detected at PET/CT was directly associated with geographic virus diffusion, with the higher rate in Northern Italy. Among 284 interstitial pneumonia detected during COVID period, 169 (59%) were FDG-avid (average SUVmax of 4.1). Conclusions: A significant increase of interstitial pneumonia incidentally detected with [18F]FDG PET/CT has been demonstrated during the COVID-19 pandemic. A majority of interstitial pneumonia were FDG-avid. Our results underlined the importance of paying attention to incidental CT findings of pneumonia detected at PET/CT, and these reports might help to recognize early COVID-19 cases guiding the subsequent management

    FORCH: An Orchestrator for Fog Computing service deployment

    No full text
    In scenarios where resource locality is the key, Fog Computing helps in bringing the potentialities of Everythingas-a-Service (XaaS) closer to the end user, reducing both service time and load on the Cloud infrastructure. We designed and developed FORCH, a service model-aware Fog Computing orchestrator to dynamically allocate services and manage resources available on Fog nodes, in order to provide for different needs of the end users. An experimental test bed to validate FORCH architecture has been implemented and will be the subject of our live demonstration, showing the feasibility of the proposed approach running on different Fog node types and with different service models

    Mission Critical Communications Support with 5G and Network Slicing

    Get PDF
    Mission Critical (MC) communications take a pivotal role to achieve effective Public Protection and Disaster Relief (PPDR) actions. Even though 3GPP standards define MC applications and services in an architectural framework compatible with current 5G mobile networks, real-life experiments and applications of these concepts are still at the very beginning. In this paper, we present an architectural study and related experimental activity on network slicing for MC communications. We implemented these services in a fully virtualized environment, and deployed and tested them in a multi-domain network slicing scenario compliant with the ETSI NFV-MANO specifications. Our work aligns with the 5G approach separating control and data planes. The level of automation in service deployment and the slice isolation features are demonstrated, showing the benefits in terms of application performance, management flexibility, scalability, and quality of service differentiation capabilities

    Enabling Industrial IoT as a Service with Multi-Access Edge Computing

    No full text
    Industrial IoT coupled with emerging cloud computing architectures shows high potential in transforming the way industrial processes are managed and carried out. This potential can be further enhanced by enabling on-demand deployment of IoT services located very close to the factory premises. This article proposes an architecture, based on the ETSI multi-access edge computing (MEC) framework, for the automated deployment of Industrial IoT applications 'as a service,' taking advantage of proximity computing platforms such as edge and fog environments. A proof-of-concept implementation is reported to demonstrate that transforming Industrial IoT applications into MEC-based services running over multiple technological domains is not only feasible, but can achieve full service deoployment in a matter of a few seconds

    Clonal selection of a novel deleterious TP53 somatic mutation discovered in ctDNA of a KIT/PDGFRA wild-type gastrointestinal stromal tumor resistant to imatinib

    Get PDF
    The standard of care for the first-line treatment of advanced gastrointestinal stromal tumor (GIST) is represented by imatinib, which is given daily at a standard dosage until tumor progression. Resistance to imatinib commonly occurs through the clonal selection of genetic mutations in the tumor DNA, and an increase in imatinib dosage was demonstrated to be efficacious to overcome imatinib resistance. Wild-type GISTs, which do not display KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations, are usually primarily insensitive to imatinib and tend to rapidly relapse in course of treatment. Here we report the case of a 53-year-old male patient with gastric GIST who primarily did not respond to imatinib and that, despite the administration of an increased imatinib dose, led to patient death. By using a deep next-generation sequencing barcodeaware approach, we analyzed a panel of actionable cancer-related genes in the patient cfDNA to investigate somatic changes responsible for imatinib resistance. We identified, in two serial circulating tumor DNA (ctDNA) samples, a sharp increase in the allele frequency of a never described TP53 mutation (c.560-7_560-2delCTCTTAinsT) located in a splice acceptor site and responsible for a protein loss of function. The same TP53 mutation was retrospectively identified in the primary tumor by digital droplet PCR at a subclonal frequency (0.1%). The mutation was detected at a very high allelic frequency (99%) in the metastatic hepatic lesion, suggesting a rapid clonal selection of the mutation during tumor progression. Imatinib plasma concentration at steady state was above the threshold of 760 ng/ml reported in the literature for the minimum efficacious concentration. The de novo TP53 (c.560-7_560-2delCTCTTAinsT) mutation was in silico predicted to be associated with an aberrant RNA splicing and with an aggressive phenotype which might have contributed to a rapid disease spread despite the administration of an increased imatinib dosage. This result underlies the need of a better investigation upon the role of TP53 in the pathogenesis of GISTs and sustains the use of next-generation sequencing (NGS) in cfDNA for the identification of novel genetic markers in wild-type GISTs
    corecore